声发射传感器(声发射传感器工作原理)

频道:电子元器件 日期: 浏览:398

声发射传感器

本文内容来自于互联网,分享声发射传感器(声发射传感器工作原理)

声发射传感器  声发射传感器

  声发射传感器是声发射检测系统的重要部分,是影响系统整体性能重要因素。声发射传感器设计不合理,或许使得接受到的信号和希望接受到的声发射信号有较大差别,直接影响采集到的数据真实度和数据处理结果。在声发射检测中,大多使用的也是谐振式声发射传感器和宽带响应的声发射传感器。声发射传感器的主要类型有:高灵敏度声发射传感器,是应用最多的一种谐振式声发射传感器;宽频带声发射传感器,通常由多个不同厚度的压电元件组成,或采用凹球面形与楔形压电元件达到展宽频带的目的;高温声发射传感器,通常由铌酸锂或钛酸铅陶瓷制成;差动声发射传感器,是由两只正负极差接的压电元件组成的,输出相应的差动信号,信号因迭加而增大;此外,还有微型声发射传感器、磁吸附声发射传感器、低频抑制声发射传感器和电容式声发射传感器等。

声发射传感器(声发射传感器工作原理)

  就声发射源定位而言,实际运用中大量遇到的是结构稳定的金属材料(如压力容器等),这类材料的声向各向异性较小,声波衰减系数也很小,频带范围大多是25KHz~750KHz,因此选用谐振式声发射传感器比较适合。

  谐振式声发射传感器参数技术的基础归结于两个基本假设:

  (1) 声发射是阻尼正弦波;

  (2) 声波是以某一固定的速度传播的。

  根据这一假设,对声发射信号参数,如上升时间、峰值幅度、持续时间等测量、记录所得到得声发射特征是合理的。传播特性上,谐振声发射传感器参数技术的假设意味着传播信号除了单纯衰减以外,它的声波形状是不变的。它是以不变的波形和不变的声速获取声发射信号的参数。

  事实上,大部分在工程应用的构件是厚度为2~30mm的板材,在板材中,包括使用广泛的实验室试件,传输的声波都不是一个单一的传播模式,而是在每一种模式中包括以不同波速传播的多种频率在内的多种波形模式,其中在某一特定情况下,某种传播模式占优。

  宽带响应的声发射传感器

  

  在失去了与源有关的力学机理的情况下,用谐振式声发射传感器来测量声发射信号有其它的局限性。为了测量到更加接近真实声发射信号来研究声源特性,就需得使用宽带声发射传感器(图2-9)来获取更广频率范围的信号。宽带响应的声发射传感器的主要优点是采集到的声发射信号丰富,全面,当然其中也包含着噪声信号。声发射传感器是宽带、高保真位移或速度声发射传感器以便捕捉到真实的波形。

  谐振响应的声发射传感器

  金属材料和其它应用场合常使用通称频率150KHz的谐振式窄带声发射传感器(典型型号PXR15)来测量工程材料的声发射信号,采用计数、幅度、上升数据、持续数据、能量这些传统的声发射参数。窄带谐振式声发射传感器灵敏度较高并且有很高的信噪比,价格便宜,规格多,如在知晓声源传播基本特性、想获取某一频带范围的AE信号来进行处理或想提高系统灵敏度,选择合适型号的谐振式声发射传感器比较好,如声源定位。应当指出所谓谐振式窄带声发射传感器并不是只对某频率信号敏感,而是对某频率带信号敏感,其它频率带信号灵敏度较低。

  特殊声发射传感器

  凡是能将物体表面振动声波转变成电量的声发射传感器都可作为声发射传感器,因此那些在超声检测领域中的各种类型声发射传感器都有可能作为声发射传感器,例如光学原理测物体表面微小位移的声发射传感器、电磁原理测物体表面微小位移的声发射传感器等。但由于声发射信号相对而言更弱小,大多数非压电原理的声发射传感器灵敏度不够只能用于特殊情况。

  另一类采用压电原理的特殊声发射传感器为转变指定声波振动方向的振动量,如平行测试物体表面的振动量和垂直测试物体表面的振动量等。由于这类声发射传感器的实际效果有待验证,目前仅见用于研究和特殊情况。

声发射传感器(声发射传感器工作原理)

  声发射传感器的选择

  声发射传感器的选择应根据被测声发射信号来确定。首先是了解被测声发射信号的频率范围和幅度范围,包括有可能存在的噪音信号。可以是经验了解,如钢材中焊接缺陷产生的声发射源实验结果认为信号频率范围在25-750KHZ内等,但有条件最好实际测试确定。然后选择相对感兴趣的声发射信号灵敏、对噪音信号不灵敏的声发射传感器进行检测。

  声发射传感器结构

  声发射传感器一般由壳体、保护膜、压电元件、阻尼块、连接导线及高频插座组成。压电元件通常采用锆钛酸铅、钛酸钡和铌酸锂等。根据不同的检测目的和环境采用不同结构和性能的声发射传感器。其中,谐振式高灵敏度声发射传感器是声发射检测中使用最多的一种。单端谐振式声发射传感器的结构简单,如图3.1所示。将压电元件的负电极面用导电胶粘贴在底座上;另一面焊出一根很细的引线与高频插座的芯线连接,外壳接地。

  声发射传感器压电元件

  声发射传感器是利用某些物质(如半导体、陶瓷、压电晶体、强磁性体和超导体等)的物理特性随着外界待测量作用而发生变化的原理制成的。它利用了诸多的效应(包括物理效应、化学效应和生物效应)和物理现象,如利用材料的压阻、湿敏、热敏、光敏、磁敏和气敏等效应,把应变、湿度、温度、位移、磁场、煤气等被测量变换成电量。而新原理、新效应的发现和利用,新型物性材料的开发和应用,使物性型声发射传感器得到很大的发展。因此了解声发射传感器所基于的各种效应,对其理解、开发和应用都是非常必要的。在声发射检测过程中,通常使用的是压电效应。

  国内的压电陶瓷材料价格便宜,因而在低端声发射传感器中应用较多,但在一致性和温度稳定性方面有些欠缺。一般高端的声发射传感器均选用日本生产的压电陶瓷元件。如国内的PXR系列声发射传感器均全部选用了日本富士陶瓷的敏感元件,其一致性、可靠性、稳定性比普通的传感器要好很多。

  具有明显压电效应的材料称为压电材料,常用的有石英晶体、铌酸锂LiNbO3、镓酸锂LiGaO3、锗酸铋Bi12GeO20等单晶和经极化处理后的多晶体如钛酸钡压电陶瓷、锆钛酸铅系列压电陶瓷PZT。新型压电材料有高分子压电薄膜(如聚偏二氟乙烯PVDF)和压电半导体(如ZnO、CdS)。

关键词:传感器发射原理